Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Dynamic Modeling of the Minimum Consumables PLSS

1999-07-12
1999-01-1999
A transient model of the Minimum Consumables Portable Life Support System (MPLSS) Advanced Space Suit design has been developed and implemented using MAT-LAB/Simulink. The purpose of the model is to help with sizing and evaluation of the MPLSS design and aid development of an automatic thermal comfort control strategy. The MPLSS model is described, a basic thermal comfort control strategy implemented, and the thermal characteristics of the MPLSS Advanced Space Suit are investigated.
Technical Paper

The Porous Plate Sublimator as the X-38/CRV (Crew Return Vehicle) Orbital Heat Sink

1999-07-12
1999-01-2004
A porous plate sublimator (based on an existing Lunar Module LM-209 design) is baselined as a heat rejection device for the X-38 vehicle due to its simplicity, reliability, and flight readiness. The sublimator is a passive device used for rejecting heat to the vacuum of space by sublimating water to obtain efficient heat rejection in excess of 1,000 Btu/lb of water. It is ideally suited for the X-38/CRV mission as it requires no active control, has no moving parts, has 100% water usage efficiency, and is a well-proven technology. Two sublimators have been built and tested for the X-38 program, one of which will fly on the NASA V-201 space flight demonstrator vehicle in 2001. The units satisfied all X-38 requirements with margin and have demonstrated excellent performance. Minor design changes were made to the LM-209 design for improved manufacturability and parts obsolescence.
Technical Paper

Columbus Orbital Facility Condensing Heat Exchanger and Filter Assembly, 1999

1999-07-12
1999-01-2005
A condensing heat exchanger and filter assembly (CHXFA) has been developed by SECAN / AlliedSignal under a contract from Daimler-Chrysler Aerospace, Dornier, as a part of a European Space Agency program. The CHXFA is part of the Environmental Control and Life Support System (ECLSS) of the Columbus Orbital Facility (COF), the European Laboratory Module of the International Space Station (ISS). The CHXFA contains a filter to remove particulates from the air stream, and a differential pressure sensor to monitor pressure drop across the filter. Parallel condensing heat exchanger cores reduce the air temperature and absolute humidity level. Efficient air-water separation is achieved by a combination of a hydrophilic coating on the heat exchanger air flow passages and a water removal section. A thermal control valve regulates the temperature of the outlet air. A sensor to detect liquid carryover in the air stream is located downstream of the CHXFA.
Technical Paper

A High Efficiency Magnetic Activated Sludge Reactor for Wastewater Processing

1999-07-12
1999-01-1945
Technologies for the recycling of water are a primary goal of NASA’s advanced life support programs. Biological processes have been identified as an attractive method for wastewater processing. A fundamental new bioreactor based on a traditional activated sludge process is demonstrated that treats hygiene wastewater using magnetic iron oxide particles agglomerated with microbial cells. In this bioreactor, microbes are suspended in magnetic flocs in a wastewater medium. Instead of a traditional gravity separator used in activated sludge operations, a magnetic separator removes the microbial flocs from the outlet stream. The reactor separation operates continuously, independent of gravitational influences. The reactor has been able to simultaneously remove 98% of high levels of both nitrogenous and organic carbon impurities from the wastewater as well as achieve acceptably low levels of total suspended solids.
Technical Paper

ISS TransHab: Architecture Description

1999-07-12
1999-01-2143
This paper will describe the ISS TransHab’s architectural design being proposed as a habitation module for the International Space Station. TransHab is a space inflatable habitation module that originally was designed to support a crew of six as a transit habitat (TransHab) to and from Mars. As an evolution of TransHab, it has transformed into the proposed alternative habitat module for the International Space Station (ISS). A team of architects and engineers at the Johnson Space Center has been designing and testing this concept to make it a reality.
Technical Paper

Human Engineering Operational Habitability Assessment: A Process for Advanced Life Support Ground Facility Testbeds

1999-07-12
1999-01-2187
Design and Human Engineering (HE) processes strive to ensure that the human-machine interface is designed for optimal performance throughout the system life cycle. Each component can be tested and assessed independently to assure optimal performance, but it is not until full integration that the system and the inherent interactions between the system components can be assessed as a whole. HE processes, such as defining/applying requirements for human interaction with missions/systems, are included in space flight activities, but also need to be included in ground activities and specifically, ground facility testbeds such as the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex). BIO-Plex is a self-contained living, working and crop-growth environment that may ultimately serve as a model for Mars surface habitation. The long duration nature of BIO-Plex brings the issue of habitability to the fore, making it tangible and testable.
Technical Paper

Development of the ECLSS Sizing Analysis Tool and ARS Mass Balance Model Using Microsoft® Excel

1999-07-12
1999-01-2080
The development of a Microsoft® Excel-compatible Environmental Control and Life Support System (ECLSS) Sizing Analysis “Tool” for conceptual design of Mars human exploration missions makes it possible for a user to choose different possible technologies in a corresponding subsystem. This tool estimates the mass, volume, and power requirements of technologies in a subsystem and the system as a whole. Furthermore, to verify that a design sized by the ECLSS Sizing Tool meets the mission requirements and integrates properly, a tabulated Integration Interface Module has been developed for quick referencing. Mass balance models that solve for component throughputs of ECLSS systems as the Water Recovery System (WRS) and Air Revitalization System (ARS) are being developed for the sizing of the subsystems. The ARS Mass Balance Model will be discussed in this paper.
Journal Article

Minimizing EVA Airlock Time and Depress Gas Losses

2008-06-29
2008-01-2030
This paper describes the need and solution for minimizing EVA airlock time and depress gas losses using a new method that minimizes EVA out-the-door time for a suited astronaut and reclaims most of the airlock depress gas. This method consists of one or more related concepts that use an evacuated reservoir tank to store and reclaim the airlock depress gas. The evacuated tank can be an inflatable tank, a spent fuel tank from a lunar lander descent stage, or a backup airlock. During EVA airlock operations, the airlock and reservoir would be equalized at some low pressure, and through proper selection of reservoir size, most of the depress gas would be stored in the reservoir for later reclamation. The benefit of this method is directly applicable to long duration lunar and Mars missions that require multiple EVA missions (up to 100, two-person lunar EVAs) and conservation of consumables, including depress pump power and depress gas.
Journal Article

Design of a Sublimator Driven Coldplate Development Unit

2008-06-29
2008-01-2169
The Sublimator Driven Coldplate is a unique piece of thermal control hardware that has several advantages over a traditional thermal control scheme. The principal advantage is the possible elimination of a pumped fluid loop, potentially saving mass, power, and complexity. Because this concept relies on evaporative heat rejection techniques, it is primarily useful for short mission durations. Additionally, the concept requires a conductive path between the heat-generating component and the heat rejection device. Therefore, it is mostly a relevant solution for a vehicle with a relatively low heat rejection requirement. This paper describes the design of an engineering development unit intended to demonstrate the feasibility of the Sublimator Driven Coldplate concept.
Technical Paper

Thermal Performance of Space Suit Elements with Aerogel Insulation for Moon and Mars Exploration

2006-07-17
2006-01-2235
Flexible fiber-reinforced aerogel composites were studied for use as insulation materials of a future space suit for Moon and Mars exploration. High flexibility and good thermal insulation properties of fiber-reinforced silica aerogel composites at both high and low vacuum conditions make it a promising insulation candidate for the space suit application. This paper first presents the results of a durability (mechanical cycling) study of these aerogels composites in the context of retaining their thermal performance. The study shows that some of these Aerogels materials retained most of their insulation performance after up to 250,000 cycles of mechanical flex cycling. This paper also examines the problem of integrating these flexible aerogel composites into the current space suit elements.
X